Monday, October 26, 2009
Wind Power as a Viable Solution to Alternative Energy Needs
Electric bills and fuel bills are rising steadily but the cost of wind turbine energy is zero, and the cost of installing and hooking up a turbine is steadily coming down as demand rises and more commercial success is realized by various companies producing the turbines and researching technologies to make them ever more efficient.
In addition, people are moving away from the traditional electric grids and the fossil fuels for personal reasons including desire for greater independence, the desire to live remotely or rurally without having to go primitive, political concerns such as fears of terrorist strikes on oil fields or power grids, or concerns about the environment.
Again, this motivation to get away from the traditional energy sources is the same one that causes people to seek the power of the wind for their energy, giving more business opportunities to profit from wind turbine production and maintenance, which drives their costs down for the consumers.
In nearly thirty states at the time of this writing, homeowners who remain on the grid but who still choose to use wind energy (or other alternative forms) are eligible for rebates or tax breaks from the state governments that end up paying for as much as 50% of their total green energy systems costs.
In addition, there are 35 states at the time of this writing where these homeowners are allowed to sell their excess energy back to the power company under what are called net metering laws. The rates that they are being paid by the local power companies for this energy are standard retail rates in other words, the homeowners are actually profiting from their own energy production.
Some federal lawmakers are pushing to get the federal government to mandate these tax breaks and other wind power incentives in all 50 states. Japan and Germany already have national incentive programs in place. However, A lot of this is handled regionally by state law. There wouldn’t really be a role for the federal government, the Energy Department’s Craig Stevens says.
And as might be imagined, there are power companies who feel that it’s unfair that they should have to pay retail rates to private individuals. We should [only have to] pay you the wholesale rate for … your electricity, according to Bruce Bowen, Pacific Gas & Electric’s director of regulatory policy.
However, the companies seem to be more worried about losing short term profits than about the benefits, especially in the long run, of the increased use of wind turbines or wind farms. Head of the Center for Energy Efficiency and Renewable Technologies of California V. John White points out, It’s quality power that strengthens the grid.
Thursday, October 22, 2009
Government Grants for Alternative Energy
Where the mixed signals were coming from concerned the fact that at the same time the President was calling on more government backing for research and development, the NREL, the National Renewable Energy Laboratory of Golden, Colardo was laying off workers and contractors left and right.
Apparently, the Laboratory got the hint, because soon after the State of the Union Address, everyone was re-hired. The second speech of the President’s was actually given at the NREL. There is almost unanimous public support for the federal backing through research grants, tax breaks, and other financial incentives of research and development of alternative energy sources.
The NREL is the nation’s leading component of the National Bioenergy Center, a virtual center that has no central bricks and mortar office. The NREL’s raison d’etre is the advancing of the US Department of Energy’s and the United States’ alternative energy objectives.
The laboratory’s field researchers and staff scientists, in the words of Laboratory Director Dan Arvizu, support critical market objectives to accelerate research from scientific innovations to market-viable solutions. At the core of this strategic direction are NREL’s research and technology development areas.
These areas span from understanding renewable resources for energy, to the conversion of these resources to renewable electricity and fuels, and ultimately to the use of renewable electricity and fuels in homes, commercial buildings, and vehicles. The federally-backed Laboratory directly helps along the United States’ objectives for discovering renewable alternative fuels for powering our economy and our lifestyles.
The NREL is set up to have several areas of expertise in energy research and development. It spearheads research and development efforts into renewable sources of electricity; these would include such things as solar power, wind power, biomass power, and geothermal power.
It also spearheads research and development of renewable fuels for powering our vehicles such as biomass and biodiesel fuels and hydrogen fuel cells. Then, it seeks to develop plans for integrated system enginnering; this includes bringing alternative energy into play within buildings, electrical grids and delivery systems, and transportation infrastructures.
The Laboratory is also set up for strategic development and analysis of alternative energy objectives through the forces of economics, market analysis and planning, and alternative energy investment portfolios structurings.
The NREL is additionally equipped with a Technology Transfer Office. This Office supports laboratory scientists and engineers in the practical application of and ability to make a living from their expertise and the technologies they develop.
NREL’s research and development staff and its facilities are recognized for their remarkable prowess by private industry, which is reflected in the hundreds of collaborative projects and licensed technologies that the Laboratory now has with both public and private partners.
Thursday, October 15, 2009
Everything You Need To Know About Green Energy
There are several categories of green energy (GE). They are anaerobic digestion, wind power, geothermal power, hydropower on a small scale, biomass power, solar power and wave power. Waste incineration can even be a source of green energy.
Nuclear power plants claim that they produce green energy as well, though this source is fraught with controversy, as we all know. While nuclear energy may be sustainable, may be considered renewable and does not pollute the atmosphere while it is producing energy, its waste does pollute the biosphere as it is released.
The transport, mining and phases before and after production of nuclear energy does produce and release carbon dioxide and similar destructive greenhouse gases. When we read of green energy, therefore, we rarely see nuclear power included.
Those who support nuclear energy say that nuclear waste is not, in fact, released into our earths biosphere during its normal production cycle. They stress as well that the carbon dioxide that nuclear energy production releases is comparable, in terms of each kilowatt hour of electricity, to such sources of GE as wind power.
As an example of the GE production the average wind turbine, such as the one in Reading England, can produce enough energy daily to be the only energy source for 1000 households.
Many countries now offer household and commercial consumers to opt for total use of green energy. They do this one of two ways. Consumers can buy their electricity from a company that only uses renewable green energy technology, or they can buy from their general supplies such as the local utility company who then buys from GE resources only as much of a supply as consumers pay for.
The latter is generally a more cost – efficient way of supplying a home or office with GE, as the supplier can reap the economic benefits of a mass purchase. Green energy generally costs more per kilowatt hour than standard fossil fuel energy.
Consumers can also purchase green energy certificates, which are alternately referred to as green tags or green certificates. These are available in both Europe and the United States, and are the most convenient method for the average consumer to support green energy. More than 35 million European households and one million American households now buy these GE certificates.
While GE is a great step in the direction of keeping our environment healthy and our air as pollutant free as possible, it must be noted that no matter what the energy, it will negatively impact the environment to some extent.
Every energy source, green or otherwise, requires energy. The production of this energy will create pollution during its manufacture. Green energys impact is minimal, however.
Tuesday, October 13, 2009
An Overview Of Energy Efficiency
Every time you buy a new air conditioning unit, a new washer or dryer, a new refrigerator, microwave, or piece of office equipment, you are affecting the environment, either positively or negatively depending on your choices. Smart choices of products designed for energy efficiency help the air we all breathe and reduce your energy bill each month.
Here is some basic information about how energy efficiency works and why its helpful. A great deal of the energy you consume in your home is produced by local power plants that must burn fossil fuel to create the energy. These fossil fuels might be natural gas, coal or oil.
These fossil fuels also create pollution. This pollution harms not only the environment but ultimately the people, as it causes smog, acid rain and respiratory diseases. Fossil fuel pollution is also a strong factor in changing the climate of the globe.
While we hear a lot about the harmful gas emissions that emanate from vehicles, what we dont hear much about is the fact that your home probably produces twice as much of these emissions as the average automobile.
Opting for energy efficiency through your choice of products that are energy efficient is one of the best ways you can reduce your consumption of energy and thus your distribution of harmful emissions of greenhouse gas. Any household that buys equipment designed for energy efficiency puts a big dent in harmful emissions of carbon dioxide.
In fact, over the lifetime of one of these energy efficient appliances or other products you will have reduced pollution the equivalent of what would be saved by one fewer vehicle for seven years. The use of energy efficient household products reduces nitrogen oxides too, which contribute extensively to acid rain and smog.
The average U.S. household spends about 1500 each year on energy. Energy-efficiency can reduce this bill by 400-450 annually. If youre concerned about energy efficiency and wish to not only save the environment but save yourself some money it will help to know which appliances account for what portion of your energy use and bill.
The biggest, which probably comes as no surprise, is your heat and air conditioning. This is a whopping 45 percent of your energy bill. Your water heater uses up 11 percent of your energy, and your washer and dryer 10 percent. The lighting for your home is seven percent of your energy costs, while your refrigerator is six percent of your bill.
Your dishwasher, computer, monitor, TV, VCR, DVD player and similar equipment each use up about two percent of your total energy consumption. Stoves, microwaves and other smaller appliances generally account for the rest, though at less than two percent of the total each.
Monday, September 21, 2009
Geothermal Comfort, Investing in Savings
Geothermal heat pumps also take advantage of the mild ground temperature for extremely high efficiency cooling. Most systems also include a hot water generator, which diverts a portion of the supplied heat to the domestic water heater. This provides a substantial portion of a family’s hot water needs at a very low cost. Overall, geothermal technology offers the highest cooling and heating efficiencies of any system available today.
Geothermal systems transfer heat from your home to the earth in the cooling mode, or from the earth to your home in the heating mode. Water is used as the heat transfer medium through a closed loop piping system buried in the ground. By using this stable thermal source, geothermal heat pumps provide energy efficient comfort year around with a factory- tested and sealed packaged unit, without the need for a noisy outdoor fan, or a flue.
The environmental advantages of geothermal systems have caught the eye of governmental agencies such as the Environmental Protection Agency (EPA) and the Department of Energy (DOE). Because geothermal technology is lowest in CO2 emissions, it provides a solution to global warming by primarily using the natural energy of the earth. EarthPure® (R-410A) zero ozone depletion refrigerant is available for ClimateMaster geothermal heat pumps for an even friendlier system.
In January 2006 the U.S. Federal government changed the minimum efficiency for air conditioners to 13 SEER from the previous minimum requirement of 10 SEER. Geothermal systems are up to twice the minimum required efficiency! As efficiency ratings increase, operating costs decrease. However, efficiency ratings alone do not tell the “whole story” when it comes to operating costs for homeowners. Fuel type, home construction, geographic location and thermostat settings are just some of the factors.
Over the years, geothermal systems have always been the leader in low operating costs. Recently, however, fossil fuels (natural gas, fuel oil and propane) have begun increasing at a much higher rate than electricity. The U.S. Department of Energy predicts that electricity prices will remain stable over the next twenty years, allowing some increase for inflation. Now is the time to consider electric technologies like geothermal heat pumps for heating, cooling and hot water needs.
Even a high efficiency natural gas furnace with a high efficiency air conditioner is still nearly twice the operating costs as a geothermal system. Since these comparisons are for new equipment (i.e. standard efficiencies = 13 SEER efficiency for air conditioners and 80% AFUE efficiency for furnaces), comparisons to existing equipment being replaced by a geothermal system would be even more dramatic. If the existing air conditioner is older, it may have an efficiency of between 8 and 10 SEER. Older furnaces could be as low as 65-70% efficient.
Wednesday, August 26, 2009
Thursday, August 20, 2009
How is a geothermal heat pump like a refrigerator?
To understand the operation of a geothermal heat pump, it helps to understand how a refrigerator works. A refrigerator uses a refrigeration circuit with four main components, a compressor (1), a condenser (2), an expansion device (3), and an evaporator (4). Refrigerant (sometimes referred to by the brand name Freon) is pumped through the circuit to transfer heat from the inside of the refrigerator to the outside.
The compressor (1) is the pump. It also pressurizes the refrigerant gas. Since temperature and pressure are directly related, as the pressure increases, the temperature increases. The high temperature/high pressure gas flows from the compressor to the condenser (2).The cooler air in the kitchen (relative to the temperature of the refrigerant, 150 to 180°F [65 to 85°C]) causes the refrigerant to condense into a liquid. When two surfaces at different temperatures touch (or are very near – separated only by tubing), the hotter surface cools and the cooler surface warms. This is a law of physics called the second law of thermodynamics. The condenser therefore releases heat to the kitchen.
The next step in the process involves the expansion device (3).The expansion device is a small orifice that the refrigerant is forced through. The small hole creates a pressure differential between the two sides of the device. Think of an expansion device like a dam on a river with a hole in the dam. The water leaking through the hole is at a low pressure on the downstream side; the water on the other side (being held back by the dam) is at a high pressure. Once again, the pressure/temperature relationship (lower pressure/ lower temperature) creates a cold, low pressure liquid refrigerant that gets fed to the evaporator (4).
As warm air inside the refrigerator (relative to the very cold temperature of the refrigerant) passes through the evaporator coil (4), the hotter surface (air inside the refrigerator) gets cooler and the cooler surface (refrigerant in the evaporator (4) tubing) gets warmer. The liquid refrigerant evaporates back into gas form, and the cycle starts over again as the refrigerant enters the compressor (1). The evaporator therefore absorbs heat from the inside of the refrigerator, which keeps the food cold.
An air conditioner or refrigerator transfers heat in only one direction. A heat pump can transfer heat in two directions, thereby heating or cooling the space. Most heat pumps heat or cool the air. Some heat pumps heat or chill water. An additional component, a reversing valve, is added to a heat pump, which allows the refrigerant to change direction, allowing the space that was being cooled to be heated.
A geothermal heat pump has a compressor, a condenser, an expansion device, and an evaporator like a refrigerator, but also includes a reversing valve to allow both heating and cooling. The big difference between a refrigerator or traditional air conditioner and a geothermal heat pump is the way heat is transferred. A geothermal heat pump transfers heat between the refrigerant circuit and the ground instead of between the refrigerant circuit and the air. The ground is a much milder heat source, since the temperature changes very little over the course of the year. The outside air temperature, however, varies significantly over the year, making a geothermal heat pump much more energy efficient than a traditional air conditioner or heat pump. A geothermal heat pump compressor also operates at lower pressures because of the milder heat source/heat sink (the ground), helping provide longer life expectancies.
A geothermal heat pump is a like a refrigerator in many ways. Simple refrigerator technology coupled with the stable temperature of the Earth provides quiet, reliable, and energy efficient heating and cooling systems for today’s discerning homeowners.